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Summary: What happens in the soil during pile-driving? 
A. A graphical method is used to determine stress and velocity in rods under dynamic loading 

conditions. Application to a sample of dry sand gives regions of permanent deformation and 

dissipation of energy into friction. Penetration of the energy into the interior of the sample is 

deeper for longer duration of impact. Experiments confirm this theoretical result. 

B. The way sand saturated with water reacts on dynamic load is studied by separating stresses and 

velocities of the two phases. It is shown that water bears nearly total dilatation stress, while the 

granular skeleton is affected by rotation for high frequency loading. 

C. Impedance of rigid sphere in infinite, elastic medium is computed in order to obtain information 

about the impedance of a pile-toe in soil. It is shown that for high frequencies the load is mostly 

affecting the water stresses. The different effects of these phenomena on the reaction of a pile 

while driven into the soil are considered. 

 

Introduction 
If one wonders what happens in the soil during 

pile driving, one encounters a phenomenon of a 

dynamic nature, the description of which 

currently cannot be given in a closed 

mathematical form. In this article we will try to 

review the different aspects of this phenomenon 

one at a time to facilitate further examination 

from both a practical and a theoretical angle. 

 

When the compression wave, generated by the 

impact of the ram on the pile cap, reaches the 

toe after travelling through the pile, part of the 

compression wave extends into the surrounding 

soil mass and the remainder returns through the 

pile as un upward wave. 

 

First, we will use the method of characteristics to 

give an indication of the effects developing in the 

pile when it is impacted by the falling ram. We 

will also demonstrate how the response of a 

material, such as sand with irreversible 
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deformation properties, to an impact load can be 

formulated by consistently applying this method. 

The derived results relate primarily to cylinders 

of dry sand. 

 

Next the question arises how a stress wave 

propagates in a mixed medium such as soil, 

which consists of granules and water. The 

problem can be solved by assigning linear 

deformation properties to the granular skeleton. 

Although this does mean an idealization of the 

soil, the solution makes it possible to draw 

general conclusions. This will also allow to 

describe the distribution of the forces between 

the two phases: granules and water. 

 

Finally, we will describe the propagation of a 

stress wave in the idealized soil mass around a 

pile toe, whereby a geometric schematization 

(representing the pile toe by a rigid sphere) is 

necessary to allow for a mathematical solution. 

Once the three-dimensional character of the 



stress wave propagation has been obtained in 

this way, it is again possible to calculate the 

distribution of the forces between the two 

phases. 

 

By combining the various results, it is possible to 

demonstrate certain tendencies, which may be 

useful in the examination of more practical 

issues, such as the magnitude of the stresses that 

can be expected in a pile during pile driving as 

well as the relationship between the soil 

behaviour during pile driving and the bearing 

capacity of the pile under static loading. 

 

A. Propagation of a stress wave 
 

The mathematical model of the wave 

propagation in elastic rods was already 

developed by de Saint Venant, and applied in a 

logical manner by Nanninga [1] to address a pile-

driving issue. However, to examine what 

happens when materials with non-linear 

irreversible stress-deformation properties (here 

the soil underneath the pile toe come to mind 

immediately) exert their influence during pile-

driving, the mathematical model is no longer 

adequate. Only a graphical method, such as the 

method of characteristics2 is then suitable. Since 

this method is not yet widely known, the 

approach will be described in the following 

paragraphs, starting with elementary concepts, 

so that afterwards it can be applied to sand. 

 

When considering the stress wave propagation in 

rods, the two d'Alembert equations are used. 

These two basic equations describe the inertia 

and continuity of a rod segment with a length of 

dx and cross-section F (Fig. 1), and relate the 

variables pressure P, velocity V, distance x and 

time t. 

 
2 This method has been developed by Massau [2] and 
applied by among others Schönfeld [3] in hydraulics. 

The mass of the segment 𝜚𝐹𝑑𝑥 undergoes an 

acceleration as a result of the force exerted on 

the segment  −(
𝛿𝑃

𝛿𝑥
)𝑑𝑥 in the x-direction, so 

that Newton's law after division by dx reads: 

 

 𝜚𝐹
𝛿𝑉

𝛿𝑡
= −

𝛿𝑃

𝛿𝑥
  (1) 

 
Figure 1:  Stress and velocity of rod segment 

The continuity of matter requires that the 

shortening ∆𝑑𝑥 of segment 𝑑𝑥 due to the 

different velocities of the front face and back 

face corresponds with the compressive force P 

and the compressibility of the rod. Application of 

Hooke's law yields P/EF = (Δdx)/dx. During time 

interval dt the force increases by (dP/dt)dt and 

the shortening by [d(Δdx)/dt]dt, which can be 

restated as –(dV/dx)dxdt, because d(Δdx)/dt is 

equal to the velocity difference between the 

front and back face of dx. Hooke's law therefore 

yields: 

 

 (
1

𝐸𝐹
)

𝛿𝑃

𝛿𝑡
= −

𝛿𝑉

𝛿𝑥
  (2) 

 

The relationship between P, V, x and t is best 

understood by multiplying eq. (1) by √𝐸/𝜚 and 

then adding it to or subtracting it from eq. (2) 

multiplied by (EF).  The outcome is then: 

 

±(𝐹√𝐸𝜚
𝛿𝑉

𝛿𝑡
±

𝛿𝑃`

𝛿𝑡
) + ( 𝐹𝐸

𝛿𝑉

𝛿𝑥
± √

𝐸

𝜚

𝛿𝑃

𝛿𝑥
) = 0 

or 

 (√
𝐸

𝜚
 

𝛿

𝛿𝑥
±

𝛿

𝛿𝑡
) (𝐹√𝐸𝜚 𝑉 ± 𝑃) = 0 (3) 

For an extensive description of the method see e.g., 
Sauer [4]. 



Let us first deal with the operator 

[√
𝐸

𝜚
 (

𝛿

𝛿𝑥
) ± (

𝛿

𝛿𝑡
)] 

 

This can be simplified when focusing on the 

various states of the rod, which during time 

interval dt travels along the rod by 

 

 ±𝛿𝑥 =  √
𝐸

𝜚
 𝛿𝑡 (4) 

 

In other words, the area of interest moves with a 

velocity of √𝐸/𝜚 (cm/sec) along the rod in 

positive (or negative) direction. After multiplying 

by dt this operator then simplifies to a total 

differential equation: 

 

𝛿𝑡 (√
𝐸

𝜚

𝛿

𝛿𝑥
±

𝛿

𝛿𝑡
) =  ± (𝑑𝑥

𝛿

𝛿𝑥
+ 𝑑𝑡 

𝛿

𝛿𝑡
) 

 

which means that eq. (3) can be written as 

 

±(𝑑𝑥
𝛿

𝛿𝑥
+ 𝑑𝑡 

𝛿

𝛿𝑡
) (𝐹√𝐸𝜚 𝑽 ± 𝑃) = 

 

 = ±𝑑(𝐹√𝐸𝜚 𝑉 ± 𝑃) = 0 (5) 

 

Integration is then simple and results in 

 

 𝑃 ±  𝐹√𝐸𝜚 𝑉 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (6) 

 
 
Figure 2:. For discontinuous stress variations, a specific 
situation in the velocity diagram is represented by a specific 
point in the impedance diagram 

So eq. (6) states that when monitoring changes 

in P and V while moving along the x-axis at a 

velocity ±𝛿𝑥/𝛿𝑡 =  √𝐸/𝜚, any increase in P 

results in a change in velocity according to the 

ratio  
𝑑𝑃

𝑑𝑉
= ± 𝐹√𝐸𝜚. 

 

In physics the ratio 𝑍 = 𝐹√𝐸𝜚 is commonly 

referred to as the impedance of the rod and the 

more the impedance Z increases the stiffer the 

rod behaves under dynamic conditions. 

 

A I.  Method of Characteristics 
Eqs. (4) and (6) form the basis of the method of 

characteristics, which is particularly suitable for 

the examination of discontinuous phenomena. 

 

This method displays graphically the relationship 

between P, V, x and t using two diagrams: the 

first with coordinates x and t, the velocity 

diagram; and the other with coordinates P and V, 

the impedance diagram. Figure 2 shows these 

diagrams for a rod that is loaded at x = 0 by P = 0 

for t < t1 and t3 < t and P = P1 for t1 < t < t2 and P = 

P2 for t2 < t < t3.  

 

In the graphs the characteristic lines are drawn, 

with slope 𝛿𝑥/𝛿𝑡 =  ±√𝐸/𝜚 in the velocity 

diagram and d𝑃/𝑑𝑉 = ± 𝐹√𝐸𝜚 in the 

impedance diagram. For any characteristic line, 

e.g., the line AoA with slope 𝛿𝑥/𝛿𝑡 =  +√𝐸/𝜚, 

the sum 𝑃 +  𝐹√𝐸𝜚 𝑉 is constant along that line. 

For x = 0 it is given that P = 0. If we also assume 

that the rod is initially at rest, or V = 0, then the 

state along the line AoA is defined by the origin of 

the impedance diagram, i.e., the point A’. This 

state remains the same along the entire line AoA 

and thus also for point A. Let us now consider a 

second characteristic line BoB. At the place where 

this line intersects the x = 0 axis there is a 

pressure P1 and as yet unknown velocity V1, 

which we can derive by starting from the state at 

point A. To do this we must go from A to B along 

a characteristic line with slope 𝛿𝑥/𝛿𝑡 =

                                 



 −√𝐸/𝜚. The foregoing yields that along such a 

line the difference 𝑃 −  𝐹√𝐸𝜚 𝑉 is constant, 

which means that in the impedance diagram it is 

positioned somewhere on a characteristic line 

that runs through A’ with slope d𝑃/𝑑𝑉 =

+ 𝐹√𝐸𝜚 . The position of B’ in the impedance 

diagram is then derived by intersecting this 

characteristic line with the line for P = P1, which 

means that the position of B’ also defines the 

value of V1. In the same manner the points C’ and 

D’ can be derived from the location of points C 

and D in the velocity diagram. Since we have 

assumed a constant load P1 for the time interval 

t1 – t3, point B’ in the impedance diagram applies 

to the entire interval in the velocity diagram and 

also to the entire area that extends slanting to 

the bottom right. Thus, an area in the velocity 

diagram is mapped as a point in the impedance 

diagram when the pressure variations are 

discontinuous. 

 
Figure 3: Characteristic lines with dimensionless scales so 
that the lines run parallel 

When line S1 is crossed while moving along the 

line ABCD starting at point A, then the state 

abruptly changes from A’ to B’ in the impedance 

diagram, remains B’ until line S2 is crossed, at 

which time it changes to C’ etc. These abrupt 

transitions are of course smooth in reality. 

 

A 2. Choice of scales 
Since characteristic directions occur in the 

diagrams, it is attractive to choose the scales of 

the diagrams in such a way that the 

corresponding directions are parallel. This can be 

achieved by entering arbitrary reference units: a 

density ρ* (kg/m3), a modulus of elasticity E* 

(N/m2), a cross sectional area F* (m2) and an 

acceleration g* (m/sec2) and thus compose the 

following dimensionless coordinate units: 

 

𝑥.
𝐹𝜚𝑔∗

𝐸∗𝐹∗  𝑡𝑔∗√𝜚∗/ 𝐸∗  
𝑃

𝐸∗𝐹∗  𝑉.√
𝜚∗

𝐸∗  

 

In doing so the angle α between the 

characteristic line S1 in the velocity diagram of 

Fig. 3 and the time axis is defined as 

 

 𝑡𝑔 𝛼 =
𝑑𝑥

𝑑𝑡
⋅

𝜚𝑔∗

𝐸∗ ⋅
𝐹

𝐹∗ ⋅
1

𝑔∗  √
𝐸∗

𝜚∗ 

 

which, when combined with eq. (4), can be 

rewritten as 

 𝑡𝑔 𝛼 =  ±
𝐹√𝐸𝜚

𝐹∗  √𝐸∗𝜚∗ (7) 

 

Similarly, in the impedance diagram the slope β 

of the characteristic line l1, is defined as 

 

 𝑡𝑔 𝛽 = −
𝑑𝑃

𝑑𝑉
⋅

1

𝐸∗𝐹∗ √
𝐸∗

𝜚∗ 

which, when combined with eq. (4), can be 

rewritten as 

 𝑡𝑔 𝛽 =  ±
𝐹√𝐸𝜚

𝐹∗  √𝐸∗𝜚∗ (8) 

 

This shows the desired outcome that α = β. 

 

 
Figure 4: When two bars are connected to each other, their 
characteristic lines mix in the impedance diagram, but are 
separated in the velocity diagram. By applying 
dimensionless scales, the same mass per unit length is 
present along the x-axis 



From eqs. (7) and (8) it is evident the tangents of 

the characteristic lines are directly proportional 

to the impedance 𝑍 =  𝐹√𝐸𝜚. 

 

When two rods of different material and cross-

section are connected to each other, their 

characteristic directions form two intermixing 

networks in the impedance diagram (Fig. 4). As 

long as the bars touch each other, the force and 

the velocity at the common cross-section are 

equal, so that that state is indicated by one and 

the same point in the impedance diagram. 

 

However, in the velocity diagram the two rods 

are separated in the direction of the x 

coordinate. The scale of this coordinate varies 

with the value of ρ and F for the rod in question, 

contrary to the scales of the other coordinates t, 

P and V, which only contain the reference units. 

The scale of x must therefore be adapted to the 

ρF of the rods, which results in the fact that there 

is the same amount of rod mass per unit length 

of the x-coordinate. Due to the difference in the 

characteristic direction in each of the rods, the 

velocity diagram consists of two parts, each with 

its own characteristic network (Fig. 4). 

 

In order to avoid any misunderstanding, it should 

be pointed out here that the x-coordinate is 

related to the rod itself and not to the special 

position of the rod in space. 

 

A 3. Energy 
The kinetic and potential energies present in 

each unit length of the rod can be stared as 

 𝑤 =
1

2
 𝐹𝜚 𝑉2 +

1

2
𝑃2

𝐸𝐹
 (9) 

 

Therefore the lines that connect points in the 

impedance diagram with equal amounts of 

energy per unit volume are ellipses (see Fig. 5) 

with major axes 

 𝑃 = √2𝑤𝐸𝐹 and 𝑉 = √
2𝑤

𝜚𝐹
 

 
Figure 5:. The velocity, with which energy is transmitted, 
occurs at a slope αe,which differs from the characteristic 
slope α in the velocity diagram. 
In the impedance diagram, ellipses connect the points of 
equal energy 

The energy transmission velocity is determined 

as follows: 

• the amount of energy transmitted during dt 

in a cross section is 𝑑𝑤 = 𝑉. 𝑃 𝑑𝑡 

• this quantity is distributed over a distance dx 

whereby 𝑑𝑤 = (
1

2
𝐹𝜚𝑉2 +

1

2
𝑃2

𝐸𝐹
)𝑑𝑥 

• therefore the energy transmission velocity is 

  
𝑑𝑥

𝑑𝑡
=

2𝑃𝑉

𝐹𝜚𝑉2+
𝑃2

𝐸𝐹
 
 (10) 

This velocity can be represented in the velocity 

diagram by a line with a slope αe, which does not 

need to correspond with the characteristic 

velocity direction when we consider an arbitrary 

state P,V (represented by point A in Fig. 5). 

 

The angle βe, at which A is seen from the origin of 

the impedance diagram, can be stated as 

𝑡𝑔 βe =
𝑃

𝑉
 𝐹∗ √𝐸∗𝜚∗ 

 

While based on eq. (10) αe can defined as 

𝑡𝑔 𝛼𝑒 =
𝑑𝑥

𝑑𝑡
⋅

𝜚𝐹

𝐹∗√𝐸∗𝜚∗
=

2𝑃
𝑉  𝐹

∗ √𝐸∗𝜚∗

[1 +
𝑃2

𝑉2  F2𝐸𝜚]
 

 

Based on eq. (7) the characteristic slope α is 

defined as 

 𝑡𝑔 𝛼𝑒 =
2 𝑡𝑔 𝛽𝑒

[1+(
𝑡𝑔2𝛽𝑒
𝑡𝑔2𝛼

)]
 (11)



 
 
Figure 6a. Small ram impacts large pile. The ram rebounds 

 

 

Figure 6b: Large ram impact small pile. The ram keeps pushing and does not rebound 

 

This shows for example, that αe = 0 for βe = 0 and 

βe = π/2, which means that there is no energy 

transmission in a rod that is under static pressure 

(V = 0) or in which there is no stress (P = 0). 

 

A 4. Application of the characteristics  
The use of the characteristics may be illustrated 

with two examples, starting with a drop hammer 

that strikes the top of a pile (Fig. 6), and then the 

progression of a stress wave through the pile, 

which encounters a solid with a different 

stiffness at the pile toe (Fig. 7). 

 

As shown in the Fig. 6, the drop hammer falls at 

a velocity V1 to encounter a pile, which is either 

stiffer (Fig. 6a) or less stiff (Fig. 6b). In the first 

case, the pile impedance (Z) is greater than that 

in the ram (Z’) and therefore the pile 

characteristic angle in the impedance diagram is 

steeper, while in the second case the pile 

impedance is smaller. 

 

The derivation of the pressure and velocity is 

now as follows. As can be seen in the velocity 

diagram, at t1 the drop hammer impacts the pile. 

From that moment on a compression wave 

travels downwards through the pile and upwards 

in the ram at propagation velocities, which are 

given by the characteristic angles in both media. 

Prior to t1 the drop hammer was in state 1’ (P = 

0, V = V1) and the pile in state 1 (P = 0, V = 0) 

represented by points 1' and 1 in the impedance 

diagram. 

 

From t1 onwards, the drop hammer and the pile 

are in contact with each other and thus have 

equal stress and velocity, i.e., the state in regions 

2 and 2’ in the velocity diagram are represented 

by one and the same point in the impedance 

                                                 



diagram. This point is determined by drawing in 

the velocity diagram a line through point 1’ with 

the same angle as the characteristic that must be 

followed to get from area 1’ to area 2’ (the 

dotted arrow). The process is repeated for 1. The 

intersection of these lines is a point designated 

as 2’,2 in the impedance diagram. Next the stress 

wave in the drop hammer reaches the top, which 

must of course be stress-free. This is achieved as 

a second wave runs down the drop hammer, 

delineating area 3’. The transition from 2’ to 3’ in 

the velocity diagram along the characteristic line 

(the dashed arrow) produces in case of the stiffer 

pile (Fig. 6a) point 3’ in the impedance diagram 

that indicates a negative velocity, which means 

that the drop hammer will bounce back. In case 

of a pile that is not as stiff as the drop hammer, 

the drop hammer velocity in region 3 remains 

positive, indicating that the ram continues to 

apply pressure on the pile top, thus generating 

another stress wave 4’ in the pile with less 

pressure and so on in a descending geometric 

sequence. The end result is then that the ram 

remains on the pile (Fig. 6b). 

 

In Fig.6 the velocity diagram is repeated on the 

right side to show the energy transmission 

velocity. Each line represents a certain amount of 

energy, and the line pattern indicates where the 

energy remains (with the line spacing 

designating the energy density). The 

construction of the respective directions follows 

from an application of eq. (11). 

 

Figure 7 shows what occurs when a stress wave, 

which is generated by a falling drop hammer as 

illustrated in Fig. 6a, reaches the pile toe after 

having travelled through the pile. The state in 

area 2, i.e., point 2 in the impedance diagrams, 

follows from Fig. 6, and serves as the starting 

point for this Fig. 7. 

 

 
Figure 7:Stress wave in the pile reaches the toe, where the pile is in contact with soil, which is either less stiff or stiffer than the 
pile. The soil is schematized with a linear impedance Z"  

                

                                  

                

                      



The soil impedance Z” now determines the 

nature of the returning disturbance in the pile. 

The way the various intersecting points in the 

impedance diagram are generated is the same as 

in the preceding figure, and therefore does need 

to be discussed in detail here. 

 

From the impedance figures for the 3 cases (soft 

soil and stiff soil with either a loosely supported 

pile toe (i.e., the pile can rebound) or a fixed pile 

toe), the expected tension stress in the pile can 

be assessed. In case of a soft subsoil, area 5 is 

already under tension, while for a stiff subsoil the 

tension only occurs from area 8 onwards. As 

tension is lost due to the soil friction along the 

pile shaft, it is to be expected that the stresses 

are smaller than indicated in the figure, since the 

stresses decrease with each passage of the stress 

wave through the pile. This means that e.g., point 

5 will shift to the origin along the characteristic 

line for the pile and thus reduce the impedance 

figure. 

 

In Fig. 7 the soil impedance is shown as a straight 

line Z”. We will see in the next section that due 

to the irreversible character of the deformation 

properties of sand, the impedance line becomes 

a zigzag line. It will also turn out that the energy 

transmission in sand, which is drawn in Fig. 7 as 

a straight bundle, has a different shape. 

 

The calculation of the stresses and the velocity 

that exist at different times can be done with the 

aid of the diagrams, and shows e.g., that the 

magnitude of the stress wave in Fig. 6 can be 

described as 

𝑃2 =
𝑉1𝑍𝑍′

𝑍 + 𝑍′
 

 

and the velocity, with which the drop hammer 

rebounds, as 

𝑉3 = 𝑉1

(𝑍 − 𝑍′)

(𝑍 + 𝑍′)
 

 

These graphically derived results can also be 

obtained mathematically. 

 

We shall now move to the examination of the 

behaviour of sand, applying the method of 

characteristics developed here. 

 

A 5. Propagation of a stress wave in sand  
To simplify the analysis, we will consider the 

propagation of a stress wave in a cylindrical 

sample of dry sand. This sample is externally 

supported by a pressure along the entire 

circumference, on which the stresses mentioned 

below are deemed to be superimposed. 

 

The deformation behaviour of the sample under 

the influence of further loading and subsequent 

unloading in the vertical direction is shown in Fig. 

8a. It shows a smooth curved path with a sharp 

increase in the vertical shortening as the 

pressure reaches a certain limit value. 

 

During unloading not all shortening is recovered. 

To graph the behaviour under the influence of a 

stress wave we will use the schematized dotted 

lines in Fig. 8a, i.e. during loading deformation 

moduli E1 and E2 for the stress increase from 0 to 

P1 and from P1 to P2 respectively, and during 

unloading from P2 to 0 a deformation modulus 

E3. Due to the steepness of the unloading line E3 

is greater than E1 and E2, which means that under 

unloading the sand behaves as a stiffer material 

than under loading. 

 

In the impedance diagram shown in Fig. 8b there 

are then 3 characteristic angles as the impedance 

for the sand column for these 3 states: 

𝐹√𝐸1𝜚, 𝐹√𝐸2𝜚 and 𝐹√𝐸3𝜚 respectively. 

 



 
Figure 8a: The shortening 
of a sand cylinder under 
axial load shows a 
hysteresis loop 

 
Figure 8b: Characteristic 

angles in the impedance 

diagram for the sand 

cylinder are different for 

loading and unloading and 

vary with the value of the 

stress P. 
 

 
Figure 9:  The stress wave reaches the interface between the 
sand cylinder and the rod. The triangular areas of stress 
increase in the velocity diagrams indicate limited 
penetration depth of the impact. The impedance diagram 
shows hysteresis loops. 

In Fig. 9 the top of the sand cylinder is connected 

to a rod of equal diameter. With a drop hammer 

a stress wave is generated in this rod, which, 

similarly to what is shown in Fig 7, travels 

towards the interface between the rod and the 

sand cylinder. The magnitude of this stress wave 

in the rod is represented by point 2 in the 

impedance diagram shown in Fig. 9. Upon 

reaching the sand state 3 is established in the 

interface, which is determined by the impedance 

of the sand as per the segmented line 1’2’3’. In 

the velocity diagram this is reflected by the 

propagation of two pressure zones in the sand, in 

accordance with the characteristic angles for E1 

and E2.This is self-evident considering what 

happens over time at a depth Δ below the 

interface (represented by the horizontal dotted 

line). First the pressure in the sand has to 

increase to P1, which occurs when transitioning 

from area 1' to 2'. When the pressure in the sand 

is P1 the subsequent pressure increase to P2  can 

only occur at a slower rate as √𝐸2 < √𝐸1. 

Therefore the transition from 2’ to 3’ occurs later 

as the distance to the interface plane increases. 

 

However, during unloading the pressure change 

occurs propagates faster because E3 .is greater 

than E2 and E1 and therefore region 3’ in the 

velocity diagram is truncated to a triangle at the 

transition to region 4’. The impedance diagram 

shows that 4’ still has a positive velocity, which is 

greater than the velocity in area 2’. Due to this 

sand encroachment a wave runs back, which 

forms the boundary of area 4’. Fig. 9 is then 

developed further based on similar 

considerations and this generates points 5’, 6’ 

etc.. (For simplicity reasons it has been assumed 

in the drawing that no tensile stresses can be 

transmitted by the interface between the rod 

and the sand). 

 

The line in Fig. 7 designated as Z”soil is replaced 

in Fig. 9 by the zigzag line 1’2’3’4’5’6’ due to the 

irreversible properties of the sand. This zigzag 

line encloses the hysteresis loops in the PV 

diagram. 
 

 
Figure 10: The lines representing the energy transmission in 
the sand gradually deviate towards the horizontal direction, 
indicating a loss of energy by conversion into frictional 
energy, which can no longer be recovered from the matter 



The energy transmission is shown in Fig. 10, 

which resembles the velocity diagram of Fig. 9, 

but now with the energy lines shown. The family 

of lines in the sand must be viewed as smooth 

wavy lines since the kinks are due to segmented 

schematization in fig. 8a of the deformation 

theory. 

 

The energy lines bend towards the horizontal 

direction, which means that energy remains in 

the sand, even when pressure and velocity have 

dropped to zero. This energy is equal to the 

frictional energy lost in the hysteresis loops 

described in the PV diagram. 

 

Summary 
The penetration of a stress wave into the sand 

cylinder reflects the characteristics of diffusion, 

because the higher stress levels propagate 

slower than the smaller ones. The unloading at 

the end of the stress wave propagates even 

faster, catching up with any pressure increase. As 

a result, the zone that experiences high stress 

levels is limited, but expands as the duration of 

the impulse increases.  

 

In the end all energy lines in the energy 

transmission diagram will run horizontally, 

indicating that all energy in the matter is 

dissipated in the form of friction. The line spacing 

(when continuing Fig. 10 to the right) is the most 

dense at the top of the sand cylinder, which 

means that most of the energy will be dissipated 

there and that the resulting permanent 

deformations will therefore be greatest at the 

top of the sand cylinder. 

 

A 6. Test Results 
To demonstrate the theoretically obtained 

results with test data, Fig. 11 shows photographs 

of sand samples subjected to various forms of 

dynamic loads. 

 

These are samples of uniform granules (0.1 to 0.3 

mm), which are externally supported by a 

pressure of 0.4 kg/cm2 on the enveloping 

membrane, which is the vacuum applied on the 

air in the pores. Originally the samples are almost 

15 cm high and have a diameter of 3.8 cm (see 

photo a).  The friction angle is approximately 27o, 

so that the samples collapse under a vertical load 

of approximately 0.67 kg/m2. 

 

When this load is applied statically (for a few 

seconds), the sample collapses in the manner 

shown in photo e, along two failure planes. Near 

the top and toe plates the sample is not 

deformed under the load in question, as these 

plates are rigid and provide the sample with 

additional support horizontally. 

 

 
Figure 11: Different ways of loading a sand sample with an with impulse of 1 Ns 
 a: original sample, b, c, d: loading time 10-5 s, 10 -3 s and 10-1 s respectively, e: static load. 



Photographs b, c, d show the effect of a dynamic 

loading with a pulse of the same magnitude (1 

N.s) in all three cases, but where the impact was 

applied in such a way that the loading time in 

photo b was approx. 10-5 s, in photo c approx. 10-

3 s and in photo d approx. 10-1 s 

 

As could be expected from the theory, the very 

brief impact (b) penetrates only slightly and the 

greatest permanent deformation is concentrated 

at the very top (despite the resistance of the rigid 

top plate). In case of c the maximum deformation 

is still at the top, but the action penetrates 

deeper as can be seen from the wrinkles in the 

rubber, which indicate the area where the 

sample has been compacted. In case of d the 

sample has been loaded uniformly over the full 

height. The image shows the characteristics of an 

extended static load. Finally in case of e the 

photo shows no deformation at the top plate and 

the beginning of the failure planes. 

 

These images were obtained with drop hammers 

of widely varying composition and impedances 

to produce these extreme results. 

 

We do not want to go any further into the lateral 

deformations at this time, but only mention that 

the exact theory for these failure forms is more 

complicated than calculated in the previous 

section, since the rotational waves cannot be 

neglected. 

 

However, to demonstrate the differences of 

penetration depths depending on the duration of 

the impact, the examples are quite acceptable. 

 

Conclusions 
Due to its graphical nature the method of 

characteristics can provide a clear overview 

when impact problems are examined, whereby 

rods of different material and dimensions are 

interacting with each other. The propagation 

velocity and impedance of the rods determine 

the magnitude and duration of the forces that 

are generated. 

 

When materials with irreversible properties are 

involved in the impact, the energy loss 

associated with the formation of permanent 

deformations is easily incorporated in the 

diagrams. 

 

If a rod that is impacted rests with one end on a 

dry sand mass, then the shorter the impact 

duration the smaller the strongly disturbed zone. 

 

B. Wave propagation in soil consisting 

of grains and water 
 

The first part of the paper described how a dry 

granular material reacts to an impact load. For 

the geomechanical practice it is more important 

to study the behaviour of sand with water in the 

pores. 

 

When developing the basic equation, not only 

the mass inertia and continuity of the two media 

must be considered, but also the friction that 

occurs when the two phases move relative to 

each other. To properly account for this last 

force, Darcy's law can be used, which states that 

the pressure drop in the pore water is equal to 

the water flow rate divided by the permeability 

coefficient k. This pressure gradient in water 

encounters its reaction in an equal but opposite 

force in the granular skeleton 

 

B 1. Arrangement of the basic equations 
Medium 1 is the water and at complete soil 

saturation it occupies n x the volume, where n = 

pore number. 

 

Medium 2 are the soil granules that occupy the 

remainder: (1 -n) x the volume. 

 



The two phases are then also distributed over the 

surface of any cross-section according to n and 

(1 – n). 

 

 
Figure 12:Velocity and stress distribution between soil 
granules and water 

Figure 12 shows schematically how pressure and 

velocity are distributed over the two phases. The 

absolute velocities of water and grain are v1 and 

v2. The pore water pressure is p1. 

 

The effective soil stress p2 is selected such that it 

is the average of the forces with which the soil 

granules rest on each other at the contact points. 

The total pressure on the soil granules in any 

cross-section dy.dz is then p2 dydz + (1-n) p1 dydz, 

whereby the second part of this expression 

reflects the water pressure on the granules. This 

total pressure acts on the granules’ interior, but 

since the granules themselves are very rigid, 

there are no meaningful resulting deformations. 

However, the deformations observed externally 

on the skeleton are much greater and are the 

result of movements and indentation of the 

contact points. These are therefore related to 

the pressure p2, and to simplify the calculation, 

we assume that the compression of the laterally 

confined skeleton is linear in accordance with 

𝜖 =
𝑝2

𝐾2
. 

In the case of a polarized compression or 

expansion wave in the x-direction, the 

deformations and the derivatives of the various 

variables are equal to zero in the y- and z-

directions. 

 

The basic equations therefore only affect 

gradients in the x direction. 

  

Equilibrium equations for the water 
The mass of the water in volume dxdydz that 

must be accelerated is 𝜚1. 𝑛 . 𝑑𝑥𝑑𝑦𝑑𝑧, where ρ1 

is the density of the water. The required 

acceleration force is then 𝜚1. 𝑛 (
𝛿𝑣1

𝛿𝑡
) 𝑑𝑥𝑑𝑦𝑑𝑧. 

 

This force is the result of:  

1) the pressure difference in the pore water over 

the distance dx, which is  −(
𝛿𝑝1

𝛿𝑥
) 𝑛. 𝑑𝑥𝑑𝑦𝑑𝑧; 

2) the Darcy frictional force, which is equal to 

– (1/k) x water flow rate x dxdydz. 

 

The water flow rate is the amount of water that 

moves relative to the granules through a cross-

section per unit of time, divided by the total area 

of that cross-section. This can be described as is 

n.dydz.(v1 – v2)/dydz, and therefore the force on 

the water is  – (n/k) (v1 – v2) dxdydz. 

 

The equilibrium of forces then yields 

 𝑛𝜚1
𝛿𝑣1

𝛿𝑡
= −𝑛

𝛿𝑝1

𝛿𝑥
−

𝑛

𝑘
(𝑣1 − 𝑣2) (1) 

 

Equilibrium equation for the grains 
The mass of the granules in volume dxdydz that 

must be accelerated is 𝜚2. (1 − 𝑛). 𝑑𝑥𝑑𝑦𝑑𝑧, 

where ρ2 is the density of the granules. The 

required acceleration force is then 

𝜚2. 𝑛 (
𝛿𝑣1

𝛿𝑡
) 𝑑𝑥𝑑𝑦𝑑𝑧. 

 

This force is generated by: 

1) the pressure difference in the contact points 

of the granules over the distance dx, which is  

−(
𝛿𝑝2

𝛿𝑥
) . 𝑑𝑥𝑑𝑦𝑑𝑧; 



2) the water pressure, because the water exerts 

pressure on (1-n) of the surface area of the 

granules. This force is −(
𝛿𝑝1

𝛿𝑥
) (1 − 𝑛) 𝑑𝑥𝑑𝑦𝑑𝑧 

3) by the Darcy frictional force, which acts 

opposite to that on the water, and is thus equal 

to +(
𝑛

𝑘
) (𝑣1 − 𝑣2) 𝑑𝑥𝑑𝑦𝑑𝑧 

 

The equilibrium of forces then yields 

(1 − 𝑛)𝜚2

𝛿𝑣2

𝛿𝑡
= 

 −
𝛿𝑝2

𝛿𝑥
− (1 − 𝑛)

𝛿𝑝1

𝛿𝑥
+

𝑛

𝑘
(𝑣1 − 𝑣2) (2) 

 

Continuity equations for the water and 

granules 
At the velocities that occur the volume of water 

in the volume dxdydz changes by 

𝑛 𝑑𝑦𝑑𝑧. (
𝛿𝑣1

𝛿𝑥
) 𝑑𝑥𝑑𝑡 over time interval dt as a 

result of the water movement over part n of the 

surface, but at the same time the available 

volume of the water becomes smaller because 

the granules occupy the additional space 

(1 − 𝑛)𝑑𝑦𝑑𝑧. (
𝛿𝑣2

𝛿𝑥
)𝑑𝑥𝑑𝑡 

 

This assumes rigidity of the granules, so that any 

variation in the volume of the skeleton must be 

at the expense of the water. 

 

This volume reduction divided by the volume 

n dxdydz is equal to the pressure increase in the 

water (
𝛿𝜚1

𝛿𝑡
) 𝑑𝑡 divided by the compression 

modulus of the water K1, so that the continuity 

equation for th water becomes 

 
𝛿𝑣1

𝛿𝑥
+

1−𝑛

𝑛
𝛿𝑣2

𝛿𝑥
−

1

𝐾1

𝛿𝑝1

𝛿𝑡
 (3) 

 

The value of p2 for the granules has been 

selected such the continuity equation can be 

written directly as: 

 
𝛿𝑣2

𝛿𝑥
= −

1

𝐾2

𝛿𝑝2

𝛿𝑡
 (4) 

 

B 2. Propagation of a harmonic oscillation 

with frequency w 
In order to examine the dynamic phenomena 

that eqs (1), (2), (3) and (4) provide grounds to 

do, a look into the effect is of a harmonic 

oscillation with frequency ω will be meaningful. 

 

In section C2 we will explain how the results of 

calculations for harmonics are used in the study 

of impacts.  For now let us just state that the 

solution is the complex oscillation 

 𝑣1,2(𝑥𝑡) = �̃�1,2 𝑒
𝑖𝜔(𝑡−

𝑥

𝑐
)

 (5) 

 

which propagates with a velocity c in the x-

direction. 

 

Elimination of p1 and p2 from eqs. (1), (2), (3) and 

(4), and combining them with (5) results in the 

following equation for the exponents of e: 

 

[−𝐾1

𝜔

𝑐2
+ 𝜚1𝜔 −

𝑖

𝑘
] �̃�1 = [

1 − 𝑛

𝑛
 𝐾1

𝜔

𝑐2
−

𝑖

𝑘
] �̃�2 

 

 [−(1 − 𝑛)𝜚1𝜔 −
𝑖

𝑘
] �̃�1 

 = [ 𝐾2
𝜔

𝑐2 − (1 − 𝑛)𝜚2𝜔 +
𝑖

𝑘
] �̃�2 (6) 

 

As these two equations cannot conflict with each 

other, the following 4th order equation can be 

formulated for c: 

𝑐4 [
(1 − 𝑛)𝜚1𝜚2

𝐾1𝐾2
+

1

𝑖𝜔𝑘

𝑛𝜚1 + (1 − 𝑛)𝜚2

𝐾1𝐾2
]

− 𝑐2[
(1 − 𝑛)𝜚2𝐾1 + (1 − 𝑛)2𝜚1𝐾1 + 𝑛𝜚1𝐾2

𝑛𝐾1𝐾2

+
1

𝑖𝜔𝑘
∙ (𝐾1 +

𝑛𝐾2

𝑛𝐾1𝐾2
] + 1 = 0 

 

Which be shortened by introducing α and ß as 

 

 𝛼4𝑐4 − 𝛽2𝑐2 + 1 = 0 (7) 

 

From eq. (7) the propagation velocity c can be 

derived, resulting in 4 values: 

 



𝑐 =  ±
1

𝛼√2
[(

𝛽2

2𝛼2
+ 1)

1
2

± (
𝛽2

2𝛼2
− 1)

1
2

] 

 

The first ± sign refers to the direction of 

propagation, i.e., in ± x direction. The second ± 

sign yields two different values for c, which 

appear more easily by considering that β2α2 is 

much more than 1 for typical property values 

that apply to wet sand: 

 

ρ1 = 1000 kg/m ρ2 = 2500 kg/m n = 0.25 -0.5 

k = 10-9 m4/N.s (for v < 10-3 cm/s) 
 

For frequencies above 1000 Hz. there are then 

two approximate propagation velocities c’ and 

c”: 

 𝑐′ =
𝛽

𝛼2 = √
[(

K1
n

)+K2]

[nϱ1+(1−n)ϱ2]
 

 c′′ =
1

β
= √

iωk
1

𝐾1
+

1

𝑛𝐾2

= (1 + 𝑖)√
ωk

2(
1

𝐾1
+

1

𝑛𝐾2
)
   (8) 

 

The physical significance of this outcome 

becomes clear when one considers the stress 

distribution between water and the granules. 

 

B 3. Distribution of stresses over water and 

grains 
To demonstrate what happens when the soil is 

dynamically loaded, we will examine how the 

stresses are distributed over the two constituent, 

when at the location of x = 0 only the granules 

are loaded with an alternating stress (with 

frequency ω) and thus the water remains 

unloaded at that location so 

 𝑝1 = 0  and 𝑝2 =  𝑝𝑒𝑖𝜔𝑡 for x = 0 (9) 

 

Since there are two rates of propagation, the 

solution for v1 and v2 also consists of two parts:  

 

𝑣1(𝑥, 𝑡) =  �̃�1
′𝑒

𝑖𝜔(𝑡−
𝑥
𝑐′) + �̃�1

′′𝑒
𝑖𝜔(𝑡− 

𝑥
𝑐′′) 

 𝑣2(𝑥, 𝑡) =  �̃�2
′𝑒

𝑖𝜔(𝑡−
𝑥

𝑐′) + �̃�2
′′𝑒

𝑖𝜔(𝑡− 
𝑥

𝑐′′) (10) 

The ratios ṽ1’/ṽ2’ and ṽ1”/ṽ2” can now be 

calculated by entering in one of the eqs. (6) the 

values of resp. c' and c" derived from eq. (8). It 

then appears that, when the practical values are 

used, the following ratios for the various 

velocities have a high degree of accuracy: 

 

 �̃�1
′ = �̃�2

′  (11)’ 

 

 �̃�1
′′ = �̃�1

′′ (
1−𝑛

𝑛
+

𝐾2

𝐾1
) (11)” 

 

One can now enter the velocities according to eq 

(10) and eq. (11) in eq. (3) and eq. (4) and thus 

express the stresses p1 and p2 e.g. as a function 

of v1‘ and v1“, and then calculate the values of v1‘ 

and v1“ as a function of the stress amplitude p, 

using the boundary condition listed at (9). This 

generates the following expressions for the 

stresses: 

 

𝑝1 =
𝑝

[(
𝐾1
𝑛

) + 𝐾2]
 [
1

𝑛
𝐾1𝑒

𝑖𝜔(𝑡−
𝑥
𝑐′)

− 
1

𝑛
𝐾1𝑒

𝑖𝜔(𝑡−
𝑥
𝑐′′)] 

  (12) 

𝑝2 =
𝑝

[(
𝐾1
𝑛 ) + 𝐾2]

 [𝐾2𝑒
𝑖(𝜔𝑡− 

𝑥
𝑐′)

− 
1

𝑛
𝐾1𝑒

𝑖𝜔(𝑡−
𝑥
𝑐′′)] 

 

B4. Discontinuous load change on impact 
The foregoing result of an oscillation with 

frequency ω on a mixture of granules and water 

can be used conveniently to determine the 

influence of a sudden pressure change. A 

discontinuous load increase of P at t = 0 can be 

described as a summation of harmonic 

oscillations using the Fourier integral: 

 𝑃(𝑡) =
𝑃

2𝜋
 ∫ (

1

𝑖𝜔
) 𝑒𝑖𝜔𝑡  𝑑𝜔

∞

−∞  (13) 

 

The replacement of the boundary condition (9) 

by expression (13) has the same effect on the 

results expressed by eqs. (12) as the inversion 



integral in calculus, where the imaginary variable 

iω replaces the real variable s in the Laplace 

transform. 

 

Calculation of the distribution of the stresses 

over water and the granules according to eq. (12) 

then requires the inversion of the functions: 

 
1

𝑠
𝑒

−
𝑠𝑥
𝑐′  𝑎𝑛𝑑 

1

𝑠
𝑒

−
𝑠𝑥
𝑐′′ =

1

𝑠
𝑒

−
𝑥

√𝐾𝑠  

 

where 

 

𝑐′ = √
[(

K1
n

) + K2]

[nϱ1 + (1 − n)ϱ2]
 

 

 𝐾 =
𝑘𝐾1𝐾2

[(
𝐾1
𝑛

)+𝐾2]
 (≈consolidation coefficient). 

 

The inversion is known from the Laplace Theory 

and generates in the end the following for the 

stresses: 

 

𝑝1

=
𝐾1

𝐾1 + 𝑛𝐾2
 𝑃 

[
 
 
 
 
 
 

{
0 𝑖𝑓 𝑡 <

𝑥

𝑐′

+1 𝑖𝑓 𝑡 >
𝑥

𝑐′

} −  

𝐾 − {

0 𝑖𝑓 𝑡 < 0

𝑒𝑟𝑓𝑐 (
𝑥

2√𝐾𝑡
) 𝑖𝑓 𝑡 > 0′}

]
 
 
 
 
 
 

 

 

  (14) 

𝑝2

=
𝐾1

𝐾1 + 𝑛𝐾2
 𝑃 

[
 
 
 
 
 
 𝑛𝐾2

𝐾1
{

0 𝑖𝑓 𝑡 <
𝑥

𝑐′

+1 𝑖𝑓 𝑡 >
𝑥

𝑐′

}

+{

0 𝑖𝑓 𝑡 < 0

𝑒𝑟𝑓𝑐 (
𝑘

2√𝑥𝑡
) 𝑖𝑓 𝑡 > 0′}

]
 
 
 
 
 
 

 

 

Figure 13 displays pressure curves in accordance 

with eqs. (14). 

 

 
Figure 13: Impact loading of the granules at x = 0 causes a 
rapid acoustic propagation of pressure in pore water 
followed by slow adjustment of grain pressure 

 

B 5. Physical interpretation of eqs. (12) 

and (14) 
Let us first consider the second term in brackets 

in all expressions. Due to the complex value of c” 

(see eq. (8)) this term quickly dampens the 

stresses during a harmonic oscillation. (The 

distance x, for which the amplitude is reduced to 

1/e, becomes smaller than 2 cm, for frequencies  

greater than 1000Hz and normal values for sand 

k = 10-9 m4/N.s, K2 = 108 N/m2). 

 

For the impact load, the second term is an error 

integral: 

𝑒𝑟𝑓𝑐(𝑧) = 2𝜋 −
1

2
∫ exp(−𝜆2) 𝑑𝜆

 

∞

𝑧

 

 

which describes the consolidation phenomenon, 

according to which the pore pressures in the 

interior are relieved at the edge of the soil body. 

The value of this term is 1 for x = 0 and decreases 

rapidly with distance x. (The distance x, for which 

half the consolidation has taken place, is 

approximately 20√t cm, where t is the loading 

duration in seconds for practical values for sand). 

 

In both expressions, the second term has the 

effect of a rapidly attenuated perturbation at the 

edge, which provides the boundary condition 

that the pore pressure is zero for x=0.  

        



If we then consider the first term, we see that the 

ratio of the terms for water and granules is 

K1/n : K2.. Since the compression modulus for 

water K1 is much greater than that for the 

granules K2, the total amplitude p at the 

harmonic oscillation and the total force P in case 

of instant loading are distributed over the 

granules and water in such a way that water 

assumes the largest share. 

 

From the formulation of the first term we further 

see that it represents a phenomenon, which 

propagates with a velocity c'. The concept of this 

propagation velocity according to eq. (8) now 

becomes more manageable. In the derived stress 

distribution the numerator K1/n + K2  

represents the compression modulus of the soil 

component, while the denominator is equal to 

the density of this component. Thus the value of 

c’ is thus reduced to the usual form 𝑐′ = √𝐾/𝜌 

for the propagation of a compression wave in a 

homogeneous medium, where K is the 

constrained compression modulus and ρ the 

density.3 

 

From eq. (11)’ we see that the first term refers to 

movements of the granules and water, which 

occur in the same direction and are equal in 

value. So, it is understandable that as part of this 

movement the water, which is the stiffest, 

assumes most of the force. According to (11)’’ 

the second term consists of opposite movements 

of the granules and water, which is why the 

Darcy friction is maximum for this part and 

results in rapid damping. 

 

We thus obtain the following image when 

compaction waves are generated in a sand body:  

within a very short distance practically the entire 

force is assumed by the water, even though the 

granules are loaded initially. This water pressure 

propagates at a high speed, which is almost equal 

 
3 In the calculations of c in paragraph B2 a minor 
aspect is neglected, which means that in reality c’ has 

to the speed of sound of water and in the order 

of 1000 m/sec. is. In a dilation wave, water and 

grains move together as a whole. 

 

Since the pressure in the granules is so small 

compared to that in the water, the influence of 

the typical material properties of the sand (non-

linearity and irreversibility) on the entire course 

of the phenomenon is very small, and when it 

comes to dilation waves, the water-saturated soil 

behaves like an elastic medium with the 

compressibility of water and the density of the 

soil. 

 

The soil behaves completely differently when it 

comes to rotational waves. 

 

B 6. Rotational Waves 
The foregoing dealt with dilation waves. This 

wave consists only of movements of matter in 

the wave propagation direction and contains no 

rotations. Apart from that type of waves, 

rotational waves can also occur in a soil body. 

These waves consist of movements 

perpendicular to the propagation direction and 

do not involve any compaction of matter. 

Generally speaking, in case of a dynamic 

phenomenon in a soil body, both wave types 

must be considered in order to be able to satisfy 

the boundary conditions. 

 

In addition, each wave phenomenon can only be 

described as a combination of dilatation and 

rotational waves. Since in a rotational waves no 

densification of matter occurs, it is to be 

expected that the pore water pressures in the 

soil with this wave type are negligible. We will 

not prove this in detail here, but simply state the 

conclusion that practically the entire rotational 

wave is absorbed by the granular skeleton and 

therefore all characteristic properties of dry sand 

are observed in case of a rotational wave in wet 

a very small imaginary component, which causes a 
small damping effect. 



sand. The propagation speed of the rotational 

wave is √𝐺/𝜌, where G is the sliding modulus of 

the granular skeleton and ρ the density of the 

mixture of granules and water. The value of G 

should take into account the non-linear and 

irreversible character of sand. 

 

In loosely packed sand with a less than critical 

density, the rotational waves cause such shifts in 

the granular skeleton that the granules start to 

float. With every loading and unloading cycle 

more contact points are then broken, so that 

especially oscillations with many successive load 

changes can really emphasize this effect. 

 

C. Effect of the geometric spread of a 

impact around a pile tip 
 

To describe the three-dimensional character of 

the impact extension below the pile toe, we only 

have a calculation that applies to an elastic 

infinite soil body, whereby the pile toe is 

schematically shaped as a sphere. For this 

reason, we cannot use the outcome for the 

permanent deformations in the sand and neither 

has the local collapse along failure planes been 

taken into account. 

 

The outcome is, however, insofar meaningful 

that it gives us an impression of the pressure 

distribution between granules and water, since 

the impedance experienced by the sphere from 

the solid can be split into a dilatation and a 

rotation component. 

 

If the displacements ur and uz, are stated in polar 

coordinate directions as derived from two 

functions E and Ω as 

2𝐺𝑢𝑟 = (1 − 2𝜈) (
𝛿2𝐸

𝛿𝑟𝛿𝑧
) − 2(1 − 𝜈) (

𝛿2Ω

𝛿𝑟𝛿𝑧
)  

2𝐺𝑢𝑟 = (1 − 2𝜈)(
𝛿2𝐸

𝛿𝑧2)

− 2(1 − 𝜈)(
𝑟−1𝛿

𝛿𝑟 [
𝑟𝛿Ω
𝛿𝑟

]
) 

 

then the increase in volume e and the rotation 

ωrz are given by 

2𝐺𝑒 = (1 − 2𝜈)
𝛿(∇2𝐸)

𝛿𝑧
 

2𝐺𝜔𝑟𝑧 = (1 − 𝜈)
𝛿(∇2Ω)

𝑑𝑟
 

 

A solution for these differential equations for the 

dynamic equilibrium at frequency ω can be the 

following set of functions: 

 

𝐸 = 𝐴𝑅−1 exp(−𝛼𝑅 + 𝑖𝜔𝑡) 

Ω = 𝐵𝑅−1 exp(−𝛽𝑅 + 𝑖𝜔𝑡) 

with 

𝛼 = 𝑖𝜔√(1 − 2𝜈)
𝜌

2
(1 − 𝜈)𝐺  = 𝑖𝜔√

𝜌

𝐾
 

𝛽 = 𝑖𝜔√
𝜌

𝐺
 

 

With a correct choice of the integration 

constants A and B, these two equations for E and 

Ω are adequate to satisfy the boundary 

conditions imposed on an infinite soil body that 

is loaded by a rigid sphere in the Z direction. with 

an alternating force 𝑃𝑒𝑥𝑝(𝑖𝜔𝑡). 

 

After elaboration according to the Theory of 

Elasticity, the derived impedance, experienced 

by the sphere due to the soil body, is  

 
𝑃

𝛿𝑢𝑧
𝛿𝑡

=
4𝜋𝐺𝑅0

𝑖𝜔
. 

{
(1 + 𝛼𝑅0)(3 + 3𝛽𝑅0 + 𝛽2𝑅0

2)

+2(1 + 𝛽𝑅0)(3 + 3𝛼𝑅0 + 𝛼2𝑅0
2)

}

{(
𝛼2

𝛽2) (3 + 3𝛽𝑅0 + 𝛽2𝑅0
2) + 2(3 + 3𝛼𝑅0 + 𝛼2𝑅0

2)}
 

where Ro is the radius of the sphere. 

 



The first term enclosed in the braces in the 

numerator is the dilatation portion, while the 

second term covers the rotation, which in line 

with the foregoing means the portion of the 

pressure assumed by the water and the portion 

taken up by the granules respectively. 

 

For high values of the frequency ω, the ratio 

between these two terms is 𝛽: 2𝛼 = √𝐾: 2√𝐺, 

which means that the water assumes most of the 

pressure since K >> G. 

 

At low frequencies the ratio is 1:2, so that the 

granules then assume 2/3 of the total force. 

 

High frequencies are those, for which 𝜔 ≫ √
𝐾

𝜌𝑅0
2. 

As shown in Fig 14b the impedance can then be 

modelled as a dashpot 𝐷0 = 4𝜋𝑅0
2 (

1

3
√𝜌𝐾 +

2

3
√𝜌𝐺), which represents the acoustic emission 

of the spherical surface, followed by a mass 𝑀 =
4

3
𝜋𝑅0

2𝜌, to represent the displaced soil. 

 

Low frequencies are those, for which 𝜔 ≪ √
𝐺

𝜌𝑅0
2. 

As shown in Fig 14a the impedance can in that 

case be modelled as a spring with stiffness 𝑆 =

4𝜋𝐺𝑅2[
6(1−𝜈)

5−6𝜈
], which corresponds with the 

static compression of a sphere in an infinite soil 

body. 

 

Using the above calculation, it is possible to 

determine all stresses and displacements in the 

soil body surrounding the sphere. However, due 

to length limitations these results are not 

reported here. Due to the terms 𝑅−1exp (𝛼𝑅) 

and 𝑅−1 exp(𝛽𝑅) in the original functions, the 

stresses propagate along spherical wave fronts 

and decrease with distance R. For ω approaching 

0, these stresses morph into the distribution 

Stokes calculated around a sphere moving 

through a liquid. 

 

 
Figure 14: .Schematic of the impedance experienced by the 
pile toe from the soil at (a) low and (b) high frequencies. 

Conclusion 
Various aspects, which make the dynamic nature 

of loading during pile driving different from a 

static load, have been made explicit through 

calculations. 

 

Some conclusions that can be drawn from the 

physical interpretation of the results are the 

following: 

 

a. A load of very short duration has limited 

penetration depth insofar as it irreversibly 

deforms the granular skeleton of a sand body. If 

the loading lasts longer, the zone of permanent 

deformations is more extensive, and the method 

of loading resembles more closely that 

associated with a static load. In dry sand this 

applies to compaction and rotational formations, 

while in water-saturated sand it really applies 

only to the rotational wave. 

b. In water-saturated sand no compaction 

deformation occurs during short-term loading, 

because the water assumes all the pressure. The 

water pressure expands into the surroundings in 

the form of a compression wave and propagates 

at high speed, without significantly deforming 

the granular skeleton. 

As the load lasts longer, the granules once again 

assume the stresses from the water. 

c. The pile toe, schematically shaped into a 

sphere, experiences more resistance from the 



surrounding soil in the form of compression 

waves as the loading frequency increases. 

 

Since these compression waves result in minimal 

permanent deformations of the granular 

skeleton, the energy that goes into it is of no use 

during pile driving. The generation of high-

frequency oscillations in the pile occur in the pile 

driving helmet and can be avoided by making the 

right choice for the impedances of the ram, pile 

helmet and pile. With the diagrams in chapter A 

it is possible to calculate whether e.g. the pile 

helmet will begin to rattle between the ram and 

the pile, or whether the blow has a penetrating 

effect. 

 

An impact that lasts for a long time, develops 

rotational waves that affect the granular 

skeleton. The longer it lasts, the greater the 

penetration depth and the smaller the force 

required to penetrate the pile over a certain 

distance. The impulse, which is distributed over 

a longer period, creates less stress in the pile and 

causes greater penetration. This consideration 

may be useful when examining pile fractures 

during pile driving. 

 

In cases where the sand has a lower density than 

the critical one, the occurrence of vibrations can 

actually increase the pore pressures and 

therefore a reduction of the resistance. Since the 

impact duration depends on the wave 

propagation velocities in the ram, pile helmet 

and pile (and in some situations also on the ratios 

of these impedances), all these quantities should 

be taken into account as well to draw conclusions 

regarding the soil properties from the blow 

counts during the pile driving. 

 

The dynamic character of the loading is lost the 

longer the impact lasts. Since the diffusion 

velocity for the pore pressures and the 

penetration depth of the impact differ for 

different types of soil, the impact duration, which 

can be regarded as static, is not the same 

everywhere. 

 

It seems that for a 15 cm high dry sand sample a 

blow of 0.1 sec. can be regarded as a completely 

static load. 

 

The dimensions of the CPT cones and the velocity 

of pushing rate during a sounding are such that 

one can always speak of a test method 

equivalent to a static load test. 

 

It is not inconceivable that the impact ram and 

impact face on a bar are dimensioned in such a 

way, that under certain circumstances a drop 

test can also be regarded as a static loading. 
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