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ABSTRACT  

 
Accurate driveability predictions assist in decision-making on pile installation aspects, like hammer choice. These 

decisions involve significant risks and costs. This paper is a proof of concept which shows that probability theory 

can be applied to driveability predictions based on the wave equation model to quantify refusal risk. Ten soil 

parameters are turned into stochastic variables. The variability of these stochastic variables consists of spatial and 

transformational variability. The former is caused by soil heterogeneity, whilst the latter is caused by uncertainty in 

the relationship between measurement and soil model parameter. Spatial variability is incorporated in the one-

dimensional profile of each parameter by means of a random field. This random field is a function of the vertical 

scale of fluctuation which is derived from Cone Penetration Test (CPT) data. The horizontal correlation is assumed 

to be zero. In practice, there will be horizontal correlation, but this cannot be derived from common soil research. 

Soil stratification (arrangement of soil layers) is assumed to be deterministic. The transformation variability of the 

stochastic variables is determined by gathering experimental data from previous research. Based on the variability of 

the parameters, Monte Carlo simulations are done to quantify the risk of refusal. Case studies show that predictions 

of the refusal risk give outcomes which are of the same order of magnitude as measurements. 
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1 INTRODUCTION  

Successful pile driving is all about reducing soil 

resistance and so causing soil to fail. A successful 

driveability prediction depends on an exact estimation 

of soil resistance capacity. In engineering practice a 

safe design is achieved by taking a safe, conservative 

value of the resistance capacity. This conservative 

value is found by taking into account a safety factor. A 

more sophisticated approach is to take into account the 

variability of each parameter by a probabilistic 

approach.  

Driveability predictions provide information on pile 

installation. For example, the hammer with minimum 

requirements to drive the pile to sufficient depth. The 

selection of a hammer has a significant effect on the 

installation costs of a pile. Typically, a stronger 

hammer is more expensive, but decreases the risk of 

refusal. Therefore, a trade-off must be made between 

risk and costs. By quantifying the risk of refusal, 

decision-making on hammer selection can be improved. 

Currently pile driveability prediction methods do not 

predict the probability of pile refusal. Reliability-based 

design theory must be applied to driveability 

predictions to incorporate uncertainty. 

Reliability-/risk-based design calls for a willingness 

to accept that absolute safety is an unattainable goal and 

that probability theory can provide a formal framework 

for developing design criteria that would ensure that the 

probability of failure (used herein to refer to pile 

refusal) is acceptably small. 

This paper, which summarizes previous research 

(Sinke, 2020), explains how probability theory is 

incorporated in a driveability prediction method 

(Allwave-PDP). 

 

2 WAVE EQUATION MODEL  

Driveability predictions based on the wave equation 

(solved by the method of characteristics) has proven to 

be the most accurate prediction method (Middendorp, 

2004). Pile driving is not a problem of impact that may 

be solved directly by Newton’s laws. The driving force 

is transmitted by waves. This propagation of waves is 

described by the wave theory. The wave equation is the 

most important formula in this field.  



 

Pile, hammer and soil form a pile driving system. 

The (vibro or impact) hammer generates the driving 

force to drive the pile in the soil. In the model the soil is 

simplified to one-dimensional properties. 

In the TNOWAVE model the continuous soil 

friction is replaced by a number of concentrated 

frictional forces. The friction/resistance is modelled by 

a spring-damper system, see Figure 1. This leads to 

resistance as function of displacement and velocity. The 

resistance is both modelled at toe and along the shaft. 

The physical process at toe and shaft are significantly 

different due to its different failure mechanisms. 

Static resistance of the soil is modelled according to 

an elasto-plastic spring defined by quake (uq) and yield 

stress (Fy), see Figure 2. Damping (velocity-dependent 

resistance) is modelled as: 

 𝑅𝑑 = 𝐶𝑣𝑎 (1) 

Where C = damping constant [kNs/m] and α = 

damping exponent [-]. For α = 1 linear (viscous) 

damping is generated, while for α < 1 a parabolic one is 

generated. 

Due to cyclic loading fatigue occurs in the soil. 

Fatigue leads to decrease of yield stress of the soil. The 

ratio of initial to residual yield stress is the β-factor. 

The β-factor is applied to the static shaft and toe 

resistance of the soil. 

The wave equation model is physically based, i.e. 

the principles of the physical process are included in the 

model. This makes this model suitable for a 

probabilistic approach. Namely, the parameters are 

measurable in contrast to an empirical model. 

In this paper the software program Allwave-PDP is 

used. This software is widely applied and has proven 

reliability. 

 

Fig. 1. Driveability model (TNOWAVE) (Middendorp, 2012) 

 

Fig. 2. Spring model (Middendorp, 2012). 

3 PROBABILITY THEORY  

Probability theory is the framework to analyse 

random events in a logical way. This framework is 

applied on the parameters of a driveability model. All 

parameters of the pile driving system have variability. 

However, the variability of pile and hammer parameters 

is in general much smaller than soil parameters, 

because pile and hammer parameters are easily 

measurable, whilst soil is a natural product and is not 

easily measurable. In this probabilistic model hammer 

and pile properties are assumed as deterministic values, 

i.e. no randomness/variability is assumed.  

Soil variability consists of spatial variability, which 

is caused by soil heterogeneity, and transformation 

variability, which is caused by uncertainty in the 

relationship between measurement and model 

parameter.  

A number of ten soil parameters (both shaft and toe) 

of the wave equation model are turned from 

deterministic parameters into stochastic parameters:  

• Yield stress 

• Quake 

• β-factor 

• Damping constant 

• Damping exponent 

A stochastic parameter has a probability 

distribution. Variability refers to how spread the values 

in this distribution are. In the next sections will be 

explained how soil variability is determined and 

incorporated in the driveability prediction model. 

 

4 SOIL PARAMETER COMPOSITION  

The wave equation model simplifies the soil to a 

one-dimensional profile. For every soil parameter a 

profile is randomly generated. The profile of each 

parameter is composed of various components, see 

steps in Figure 3 for a visualization. The standardized 

random field and stratification are identical for all 

parameters. For each parameter a unique residual 
standard deviation (σres) and trend lines are determined. 

With step 1 and 2 spatial variability is included. A 



 

standard normal random field (μ=0, σ=1) is generated 

as a function of the scale of fluctuation (θ), see section 

5.2 for further explanation. By substituting σres in the 

standard random field a parameter-specific random 

field is obtained, see also step 1. This random field is 

added to a trend line, see step 2. The trend line is 

derived from the soil parameter based on the 

characteristic CPT.  

To include transformation variability each soil 

layer is multiplied by a factor sampled from a normal 

distribution with a parameter-specific coefficient of 

variation (COV), see step 3 and section 6 for further 

explanation.  

The result is a randomly generated one-

dimensional profile of a soil parameter. As a result 

spatial variability random scatter is added to the trend 

lines. The transformational variability is accounted for 

by shifting the profile per layer. 

 

5 SPATIAL VARIABILITY  

Geotechnical properties vary both in vertical and 

horizontal direction. This variability is caused by 

heterogeneity of the soil (Hicks, 2015). In the 

Netherlands geotechnical properties are primarily 

determined by Cone Penetration Test (CPT) research. 

This results in vertical profiles of cone and shaft 

resistance. With these parameters the soil type can be 

determined.  

A characteristic CPT must be selected for the soil 

on which the probabilistic prediction is made. Namely, 

stratification and trend lines are derived from the 

characteristic CPT, see also Figure 4 for an example. In 

Figure 4 the CPT consists of 3 layers.  

Fig.3. Composition of one-dimensional soil parameter. 

The trend lines of each layer are shown in red.  

Typically, a soil consists of various geotechnical 

layers. These layers result in abrupt property changes at 

their boundaries. Within layers the geotechnical 

properties are relatively homogeneous; variability is 

mostly limited to cone resistance, whilst soil type does 

not vary. The properties of the layers (thickness and 

depth) can vary greatly in horizontal direction. A CPT 

gives limited insight in the variability in the horizontal 

direction. The horizontal variability can be qualitatively 

observed when multiple CPT’s of a certain area are 

available.  

5.1 Scale of fluctuation  

A CPT gives a substantial amount of data points 

(every 0.02 m) in a vertical line. This makes a CPT 

suitable to extract the vertical scale of fluctuation of 

CPT properties. The scale of fluctuation defines the 

distance beyond which there is no significant 

correlation and is used to quantify spatial variability. 

To make a CPT suitable for extraction of the scale 

of fluctuation, the data must be detrended and 

normalized (Lloret-Cabot, 2014). Detrending implies 

removing the linear depth trend from the data, see 

figure 4. Consequently, the detrended data is divided by 

its residual standard deviation (σres) to normalize the 

data. The result is a standard normal field (μ=0, σ=1). 

Note that this process is an inverse process of the 

profile composition. In the composition the field is 

multiplied by σres and the trend is added. 

 

 

 

 

 



 

 

The scale of fluctuation is extracted from the 

standard normal field by fitting a theoretical and 

experimental autocorrelation function. 

The (experimental) autocorrelation function follows 

from analysis of the standard normal field. This 

function is fitted to a theoretical function. This is done 

by fitting the scale of fluctuation, which is a parameter 

of the theoretical function. It is assumed that the 

theoretical function has an exponential shape (Lloret-

Cabot, 2014). This implies that with increasing distance 

between two points, the correlation decreases 

exponentially. 

 

Fig. 4. CPT (cone resistance) including trend lines per layer 

5.2 Soil stratification  

In the probabilistic model the soil stratification 

(arrangement of layers) is considered as deterministic. 

Each layer is considered as an independent soil profile, 

see for example Figure 4 where 3 layers are identified. 

Due to the independence of the layers there is no 

correlation between its properties. This is a 

simplification to make a workable model. In some 

CPT’s no clear stratification can be distinguished. This 

requires engineering judgement. In reality, there will 

always be variability in the stratification in the 

horizontal plane, e.g. depth of a layer boundary will 

vary and in non-uniform soils layers might even 

disappear from one CPT to the next.  

The more the stratification varies, the more limited 

the valid distance from the CPT is.  

5.3 Horizontal variability  

In a typical Dutch foundation project (e.g. a quay 

wall) the horizontal distance between CPT’s is 25-50m. 

Horizontal correlation cannot be accurately estimated 
with this distance. In the probabilistic model the 

horizontal correlation is assumed zero when the one-

dimensional random field is generated. Implicitly, some 

horizontal correlation is incorporated in the random 

field as the stratification and trend lines are considered 

deterministic. 

This approach leads to conservative results for 

predictions in 10-15 m proximity of the selected CPT. 

Namely, in this proximity horizontal correlation is 

significant and it is therefore expected that in reality the 

spatial variation is small nearby the CPT. 

 

6 TRANSFORMATION VARIABILITY  

A transformation model relates a field measurement 

(e.g. cone resistance) to a model parameter (e.g. toe 

damping). These relationships are found by laboratory 

experiments or matching of predictions and practice 

(postdictions). Usually the best estimate (as a single 

value) of these experiments and postdictions is used in 

prediction models. In a probabilistic model the 

variability of model parameters is considered.  

CPT data only measures static parameters. The 

dynamic parameters must be derived from the CPT data 

by establishing a relationship between static parameters 

and dynamic parameters.  

Transformation variability is applied to the soil 

parameters as mentioned in section 3. Except the yield 

stress, because this parameter is directly measured by 

the CPT. Therefore, there is no transformation 

variability. 

In Table 1 the coefficient of variation (COV), 

which is the ratio of the standard deviation to the mean, 

is shown for each parameter. This statistical property 

shows the variability in relation to the mean and is a 

dimensionless number. This makes the value 

independent of the measurement unit. Hence, also 

measurement data in other units can be used  to 

determine variability. The sections below explain how 

the transformational variability is established. 

Table 1. Coefficient of variation for stochastic variables. 

Soil parameter Shaft Toe 

Quake 41% 10% 

β-factor 32-64% 32-64% 

Damping constant Sand/clay: 32/34% 58% 

Damping exponent 19% 19% 

6.1 Quake  

Research data is available on shaft quake values of 

displacement piles (McVay and Kuo, 1999). Shaft 

friction is largely the same phenomenon in 

displacement and non-displacement piles.  

For toe quake no experimental data is available. The 

Young’s modulus is to a certain degree analogous to 

quake as both parameters define a relationship between 

stress and strain. Therefore, the variation according to 

NEN9997-1 soil Young’s modulus is adopted for toe 

quake.  



 

6.2 β-factor 

Analysis on β-factor in a collection of case studies 

on sandy soils (FR<1,0) leads to a COV of 0.32 

(Robertson, 2010). As no conclusive research on β-

factor of clay can be found, it is assumed that the COV 

for clay is double that of sand. Few systematic research 

has been carried out on fatigue due to cyclic loading on 

clay. Clay behavior is more complex than that of sand, 

because of its dependency on such factors as time-

dependent creep and preconsolidation periods which 

can be overlooked for sand (Yasuhara, 1992). 

6.3 Damping constant 

One test set-up measured the toe damping of clay 

and sand by a falling load on a sample (Coyle & 

Gibson, 1970). A falling load resembles the impact of 

the pile toe on the soil. In another experiment toe and 

shaft damping of clay samples is measured by pushing 

a rod in a sample at different speeds (Lithouki & 

Poskitt, 1980). Due to a lack of experiments on shaft 

damping of sand, the variability of clay is assumed to 

be valid for sand. 

6.4 Damping exponent 

The range of 0.17 – 0.37 found in literature for the 

damping exponent is assumed as a 95% confidence 

interval (Lee, 1988). 

7 MONTE CARLO SIMULATION  

In a Monte Carlo (MC) simulation a process is 

repeated a number of times in which the input 

parameters vary according to probability distributions. 

This MC simulation is done for a driveability prediction 

in which the soil parameters are randomly generated as 

described in the previous sections. The result is a 

number of penetration speed-depth-curves (vp-z-

curves), see Figure 5. The probability of refusal is 

defined as the proportion of the total number of 

simulations in which refusal occurs (defined as non-

exceedance of a penetration speed of 10 mm/s, see 

vertical red line). Three case studies have been done to 

prove that this probabilistic method gives realistic 

results. 

7.1 Case studies  

All cases are foundation project in which sheet piles 

are driven with vibro hammers. Elaborate project data 

is available, like geotechnical reports and data on 

hammer and sheet pile type. In Table 2 a comparison on 

prediction and measurement is given. 

Table 2. Results prediction and measurement of refusal rate 

Case Prediction Measurement 

Den Oever 33% 50% 

Woudsend 18% 25% 

Rotterdam 0% 0% 

 

 

These results show that the prediction results have 

the same order of magnitude as the measurements. 

Please note that for the Rotterdam case study no 

driveability issues occurred. The MC simulation was 

made to check if the model does not present false 

positives (i.e. predicting refusal where driving goes 

well). 

 

Fig. 5. Visualization of MC simulation in vp-z-graph. 

8 CONCLUSIONS 

The probabilistic driveability prediction gives extra 

information compared to the usual prediction, namely 

the risk of refusal. This is useful when pile installation 

aspects are considered. A MC simulation is an intuitive 

method to take into account the variability of the pile 

driving system parameters. Case studies show that 

model is a proof-of-concept of application of 

probability theory to driveability predictions.  

Only the variability of soil parameters is considered. 

The other pile driving system components; pile and 

hammer are assumed as deterministic parameters in this 

model. The soil variability is split into transformational 

variability and spatial variability. The former is caused 

by an uncertain relationship between measurement 

(CPT) and model parameters. The latter is caused by 

soil heterogeneity and takes into account that a CPT is 

just a local representation of the soil. A random field 

based on the vertical scale of fluctuation of the CPT is 

added to the trend line to model the spatial variability. 

The transformation variability is modelled by 

multiplying each soil layer by a randomly generated 

factor. 
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